High Efficiency Cu(In,Ga)Se2 Flexible Solar Cells Fabricated by Roll-to-Roll Metallic Precursor Co-sputtering Method
نویسندگان
چکیده
We report on a Cu(In,Ga)Se2 (CIGS) solar cell fabricated on flexible stainless steel substrate by a low cost mass production roll-to-roll process. Fabricated device has a high energy conversion efficiency of 14%, with short circuit current density (Jsc) of 36.6mAcm 2 and open circuit voltage (Voc) of 0.55V. A two-dimensional (2D) simulation model for CIGS solar cell design and optimization was proposed. Opto-electrical properties showed that both experimental and simulated results are consistent with each other. The photons absorber in CIGS solar cells was prepared by co-sputtering metallic precursors of In and CuGa followed by thermal annealing in Se vapor. The device chemical properties were analyzed by secondary ion mass spectrometry (SIMS) and transmission/scan electron microscopy (TEM/SEM). Indium and gallium interdiffusions were observed during the growth of film, forming a band grading in CIGS layer. Accumulation of In at the top CIGS surface, resulting in a low bandgap, was responsible for the limited output open circuit voltage. Nano-scale voids were observed in the grown CIGS layer. A model based on Kirkendal effect and interdiffusion of atoms during selenization is developed to explain the formation mechanism of these voids. Na and K incorporation as well as metallic impurities diffusion are also discussed. # 2013 The Japan Society of Applied Physics
منابع مشابه
Fabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process
Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...
متن کاملCu(In,Ga)Se2 FILM FORMATION FROM SELENIZATION OF MIXED METAL/METAL-SELENIDE PRECURSORS
For Cu(In,Ga)Se2 films made by the selenization of metallic precursors, Ga accumulation at the back contact prevents the achievement of high voltage solar cells. In this work, selenization of mixed metal/metal-selenide precursors has been studied with respect to the composition distribution and device performance. Precursors consisting of Cu-Se/Ga/In and (In,Ga)-Se/Cu were reacted in H2Se at 45...
متن کاملEmploying Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells
Reducing absorber layer thickness below 500 nm in regular Cu(In,Ga)Se2 (CIGS) solar cells decreases cell efficiency considerably, as both short-circuit current and open-circuit voltage are reduced because of incomplete absorption and high Mo/CIGS rear interface recombination. In this work, an innovative rear cell design is developed to avoid both effects: a highly reflective rear surface passiv...
متن کاملHow the Starting Precursor Influences the Properties of Polycrystalline CuInGaSe2 Thin Films Prepared by Sputtering and Selenization
Cu(In,Ga)Se2 (CIGS)/CdS thin-film solar cells have reached, at laboratory scale, an efficiency higher than 22.3%, which is one of the highest efficiencies ever obtained for thin-film solar cells. The research focus has now shifted onto fabrication processes, which have to be easily scalable at an industrial level. For this reason, a process is highlighted here which uses only the sputtering tec...
متن کاملFlexible polymer solar cell modules with patterned vanadium suboxide layers deposited by an electro-spray printing method
Vanadium suboxide (VOx) layers deposited by an electro-spray (e-spray) printing method were applied to the fabrication of high efficiency patterned polymer solar cell (PSC) modules. By tailoring surface tension and the atomization condition of the e-sprayed sol precursor, e-sprayed VOx layers on top of both hydrophilic and hydrophobic surfaces were successfully obtained, which enabled alternati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013